Dr. Lalitha Subramanian

About the Author

Precalculus

Chapter 1: Functions and Graphs

1.7: Parametric Relations

A parametric relation is a relation where both x and y are defined in terms of a third variable. This third variable is called a Parameter. A plane curve is defined by the set of points (x, y) such that $x=f(t)$ and $y=g(t)$ where f and g are both defined on an interval I. The equations $x=f(t)$ ane $y=g(t)$ are the parametric equations of the curve, with the parameter t.

EXAMPLE I:

Consider the set of all ordered pairs $x=t+1$ and $y=t^{2}$, where t is any real number. Find the points determined by
$t=-2, \quad-1, \quad 0, \quad 1, \quad 2$. Also, find an algebraic relationship between the variables x and y, and graph this relation.

Solution:

t	$x=t+1$	$y=t^{2}$	(x, y)
-2	-1	4	$(-1,4)$
-1	0	1	$(-1,1)$
0	1	9	$(0,1)$
1	2	1	$(2,1)$
2	3	4	$(2,3)$

To find the relationship between x and y, we eliminate t between the two equations:

$$
\begin{aligned}
x & =t+1 \\
t & =x-1 \\
y & =t^{2} \\
y & =(x-1)^{2}
\end{aligned}
$$

Graph of this relationship is shown below:

EXAMPLE 2:

Find coordinates of the point represented by $t=-1$ in the relationship $x=3 t-5$ and $y=6-2 t$.

Solution: Substituting the given value of t in the two equations, we get

$$
\begin{aligned}
x & =3(-1)-5 \\
& =-8 \\
y & =6-2(-1) \\
& =8
\end{aligned}
$$

Hence, the coordinates of the point is $(-8,8)$.

Parametric equations for a given relationship is not unique. We can assume either x of y as a parameter either alone as an equation involving the parameter, and then substitute in the given relationship
to get the corresponding parametric equation for y. A parameter is represented by any symbol of though commonly used parameters are t and θ.

EXAMPLE 3:

Find a pair of parametric equations for the relationship $x^{2}+y^{2}=4, \quad x, y \geq 0$

Solution: First, we solve the above equation for y :

$$
\begin{aligned}
y^{2} & =4-x^{2} \\
y & =\sqrt{4-x^{2}}
\end{aligned}
$$

As per the given conditions, y is positive. Also, from the solution for y, we see that the restriction of x is $-4 \leq x \leq 4$ Now, let the parameter be t, and let $x=t$. So, we get the second parametric equation as $y=\sqrt{4-t^{2}}$, with $-4 \leq t \leq 4$. If we take the first equation as $x=t^{2}$, then, the second equation would be $y=\sqrt{4-t}$, with $t \leq 4$.

Practice Problems

(1) For the parametric relationship $x=3 t$ and $y=t^{2}-4$, find th ϵ
$(6,0)$
(2) For the parametric relationship $x=\sqrt{t+1}$ and $y=2 t-5$, fir
$(2,1)$
(3) Find the rectangular equation for the parametric relationship x

$$
(y+5)^{2}=4 x
$$

(4) For the parametric relationship $x=2 t$ and $y=5 t+1$, find thi

$$
(-4,-9),(-2,-4),(0,1),(2,6),(4,1)
$$

(5) Find the points determined by the values of $t=-2,-1,0,1,2$
$(0,-3),(-1,-2),(0,-1),(3,0),(8,1)$
(6) Find a parametric relation for the function $y=2 x+7$

If we take $x=t$, then, $y=2 t+7$
(7) Find a parametric relation for the function $x^{2}+y^{2}=4$

$$
x=2 \cos \theta \text { and } y=2 \sin \theta
$$

For problems \#8-12, for each plane curve, find the rectangular form and then graph the curve:
(8) $x=t+2$ and $y=t^{2}+1$

$$
y=(x-2)^{2}+1
$$

(9) $x=2 \sin t$ and $y=3 \cos t$
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

(10) $x=t^{3}+1$ and $y=t^{3}-1$

$$
y=(x-1)^{3}-1
$$

(11) $x=t$ and $y=\sqrt{t^{2}+2}$

$$
y=\sqrt{x^{2}+2}
$$

(12) $x=t+2$ and $y=\frac{1}{t+2}$
$y=\frac{1}{x}$

(13) Let $x=t^{2} \mathrm{n}$ and $y=2 t+3$. Graph the plane curve defined b

(14)Graph the equation defined by the parametric relationship $x=$

(15) Graph the plane curve defined by the parametric equations x

Best viewed in Mozilla Firefox. Click here to download.

