Dr. Lalitha Subramanian

About the Author

Precalculus

Chapter 1: Functions and Graphs

1.3: Operations on Functions.

Given two functions $y=f(x)$ and $y=g(x)$, we can evaluate any expression involving addition, subtraction, multiplication, division, or composition of functions. Rules for doing this are stated below:

1. $(f+g)(x)=f(x)+g(x)$
2. $(f-g)(x)=f(x)-g(x)$
3. $(f g)(x)=[f(x)][g(x)]$
4. $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
5. $(f \circ g)(x)=f[g(x)]$. This operation is called composition of two functions. The resulting function $f \circ g=f[g(x)]$ is the composite function of $f(x)$ and $g(x)$.

EXAMPLE 1:

Let $f(x)=3 x+2$ and $g(x)=\frac{3 x-2}{x}$, find and simplify the following:
(a) $\quad(f g)(x)$
(b) $(f-g)(x)$

Solution: (a)

$$
\begin{aligned}
(f g)(x) & =(3 x+2)\left(\frac{3 x-2}{x}\right) \\
& =\frac{(3 x+2)(3 x-2)}{x} \\
& =\frac{9 x^{2}-4}{x}
\end{aligned}
$$

(b)

$$
\begin{aligned}
(f-g)(x) & =(3 x+2)-\frac{3 x-2}{x} \\
& =\frac{x(3 x+2)-(3 x-2)}{x} \\
& =\frac{3 x^{2}+2 x-3 x+2}{x} \\
& =\frac{3 x^{2}-x+2}{x}
\end{aligned}
$$

EXAMPLE 2:

Given two functions $f(x)=\sqrt{x+2}$ and $g(x)=x^{2}$, find and simplify
(a) $(f \circ g)(x)]$
(b) $\left(\frac{f}{g}\right)(x)$

Solution: (a)

$$
\begin{aligned}
(f \circ g)(x) & =f[g(x)] \\
& =f\left(x^{2}\right) \\
& =\sqrt{x^{2}+2}
\end{aligned}
$$

(b)

$$
\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x+2}}{x^{2}}
$$

EXAMPLE 3:

Let $f(x)=\sqrt{x+3}$ and $g(x)=2 x-1$. Evaluate
(a) $(f g)\left(\frac{1}{2}\right)$
(b) $\left(\frac{f}{g}\right)(-2)$.

Solution: (a)

$$
\begin{aligned}
(f g)\left(\frac{1}{2}\right) & =f\left(\frac{1}{2}\right) \times g\left(\frac{1}{2}\right) \\
& =\sqrt{\left(\frac{1}{2}+3\right)} \times\left(2 \times \frac{1}{2}-1\right) \\
& =\left(\sqrt{\frac{7}{2}}\right) \times 0 \\
& =0
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left(\frac{f}{g}\right)(-2) & =\left(\frac{f(-2)}{g(-2)}\right) \\
& =\left(\frac{\sqrt{-2+3}}{-4-1}\right) \\
& =\left(\frac{1}{-5}\right) \\
& =-\left(\frac{1}{5}\right)
\end{aligned}
$$

EXAMPLE 4:
Let $f(x)=2 x+1$ and $g(x)=x-2$. Find and simplify $(f \circ g)(x)$.
Solution:

$$
\begin{aligned}
(f \circ g)(x) & =f[g(x)] \\
& =f[x-2] \\
& =2(x-2)+1 \\
& =2 x-4+1 \\
& =2 x-3
\end{aligned}
$$

EXAMPLE 5:

Let $f(x)=x^{2}+4$ and $g(x)=\sqrt{x+1}$. Evaluate
(a) $(f \circ g)(3)$.
(b) $\quad(g \circ f)(-2)$.

Solution: (a)

$$
\begin{aligned}
(f \circ g)(3) & =f[g(3)] \\
& =f[\sqrt{4}] \\
& =f[2] \\
& =2^{2}+4 \\
& =8
\end{aligned}
$$

(b)

$$
\begin{aligned}
(g \circ f)(-2) & =g[f(-2)] \\
& =g[8] \\
& =\sqrt{9} \\
& = \pm(3)
\end{aligned}
$$

EXAMPLE 6:

Let $f(x)=\frac{1}{x-1}$ and $g(x)=\sqrt{x}$. Determine
(a) $(f \circ g)(x)$.
(b) $\quad(g \circ f)(x)$.

Solution: (a)

$$
\begin{aligned}
(f \circ g)(x) & =f[g(x)] \\
& =f[\sqrt{x}] \\
& =\frac{1}{\sqrt{x}-1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
(g \circ f)(x) & =g[f(x)] \\
& =g\left[\frac{1}{x-1}\right] \\
& =\sqrt{\frac{1}{x-1}} \\
& =\frac{1}{\sqrt{x-1}}
\end{aligned}
$$

From the above example, we note that $(f \circ g)(x) \neq(g \circ f)(x)$.
Generally, composition of two functions is not commutative. That is $(f \circ g)(x) \neq(g \circ f)(x)$.

For the composite function $(f \circ g)(x)$ to be meaningful, $g(x)$ must be in the domain of $f(x)$. To find the domain of $(f \circ g)(x)$, we need to consider the domain of $f(x)$ and the domain of $g(x)$.

EXAMPLE 7:
Let $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}$. Determine the following composite functions and domains:
(a) $(f \circ g)(x)$.
(b) $\quad(g \circ f)(x)$.

Solution:
(a)

$$
\begin{aligned}
(f \circ g)(x) & =f[g(x)] \\
& =f[\sqrt{x}] \\
& =x+2
\end{aligned}
$$

Domain of $f(x)$ is all real numbers, but the domain of $g(x)$ is are non-negative real numbers. This makes the domain of $f[g(x)]$ as all non-negative real numbers. So, domain of $(f \circ g)(x)$ is $[0, \infty)$.
(b)

$$
\begin{aligned}
(g \circ f)(x) & =g[f(x)] \\
& =g\left[x^{2}+2\right] \\
& =\sqrt{x^{2}+2}
\end{aligned}
$$

In this case, domain of the inside function $f(x)=x^{2}+2$ is all real numbers, whereas the domain of the outside function $g(x)=\sqrt{x}$ is all non-negative real numbers. We note that the domain of $(g \circ f)(x)$ is $(-\infty, \infty)$.

One important operation of function involves finding the difference quotient of a function.
For any given function $y=f(x)$, the expression $\frac{f(x+h)-f(x)}{h}$ is called the difference quotient of the function. This difference quotient is of great relevance in calculus.
We can split the process of finding the difference quotient into 3 steps:

1. Step 1: Evaluate $f(x+h)$
2. Step 2: Evaluate $f(x+h)-f(x)$
3. Step 3: Simplify $\frac{f(x+h)-f(x)}{h}$

EXAMPLE 8:

Find the simplify the difference quotient for the function
$f(x)=x^{2}+x-3$
Solution:

$$
\begin{aligned}
f(x+h) & =(x+h)^{2}+(x+h)-3 \\
& =x^{2}+2 h x+h^{2}+x+h-3 \\
f(x+h)-f(x) & =\left(x^{2}+2 h x+h^{2}+x+h-3\right)-\left(x^{2}+x-3\right) \\
& =2 h x+h^{2}+h \\
\frac{f(x+h)-f(x)}{h} & =\frac{h(2 x+h+1)}{h} \\
& =2 x+h+1
\end{aligned}
$$

EXAMPLE 9:

Find and simplify the difference quotient for the function $f(x)=\sqrt{x}$

Solution: For this function, step 1 is not needed. So, we shall start with step 2:

$$
\begin{aligned}
f(x+h)-f(x) & =\sqrt{x+h}-\sqrt{x} \\
\frac{f(x+h)-f(x)}{h} & =\frac{\sqrt{x+h}-\sqrt{x}}{h}
\end{aligned}
$$

In order to simplify this expression so that the h in the denominator can be canceled, we multiply and divide the expression by the conjugate of the numerator:

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

EXAMPLE 10 :
Find and simplify the difference quotient for the function $g(x)=\frac{2}{x+1}$

Solution:

$$
\begin{aligned}
g(x+h) & =\frac{2}{x+h+1} \\
g(x+h)-g(x) & =\frac{2}{x+h+1}-\frac{2}{x+1} \\
& =\frac{2(x+1)-2(x+h+1)}{(x+h+1)(x+1)} \\
& =\frac{2 x+2-2 x-2 h-2}{(x+h+1)(x+1)} \\
& =\frac{-2 h}{(x+h+1)(x+1)} \\
\frac{g(x+h)-g(x)}{h} & =\frac{-2 j}{h(x+h+1)(x+1)} \\
& =\frac{-2}{(x+h+1)(x+1)}
\end{aligned}
$$

Practice Problems

(1) If $f(x)=3 x+1$ and $g(x)=x^{2}$, find a formula for $f+g$.

$$
(f+g)(x)=x^{2}+3 x+1
$$

(2) If $f(x)=|x-2|$ and $g(x)=\sin x$, find a formula for $2 g-4 f$.
$(2 g-4 f)(x)=2 \sin x-4|x-2|$.
(3) If $h(x)=\sqrt{x-2}$ and $g(x)=\tan x$, find a formula for $h g-2$
$(h g-2 g)(x)=\tan x \sqrt{x-2}-2 \tan x$
(4) If $f(x)=x^{4}$ and $p(x)=\sqrt{x+1}$, find a formula for $3 f p$
$(3 f p)(x)=3 x^{4} \sqrt{x+1}$.
(5) If $r(t)=\sqrt{t+1}$ and $s(t)=\sqrt{t-2}$, find a formula for $\left(\frac{g}{f}\right)$.
$\sqrt{\left(\frac{t-2)}{(t+1)}\right.}$.
(6) If $f(x)=\sqrt{x+5}$ and $g(x)=3 x-1$, evaluate $((f-g)(-1)$.
$(f-g)(-1)=6$.
(7) If $g(x)=x^{2}-x$ and $h(x)=6-x^{2}$, evaluate $2(g h)(2)$
8.
(8) If $f(x)=x^{2}-2$ and $g(x)=\sqrt{x+1}$, find $(f \circ g)(x)$ and henc
$(f \circ g)(x)=x-1$ and $(f \circ g)(-2)=-3$.
(9) If $f(x)=\frac{1}{2 x}$ and $g(x)=\frac{2}{3 x}$, find $(g \circ f)(3)$
4.
(10) If $f(x)=\frac{x}{x+1}$ and $g(x)=4-x^{2}$, evaluate $(g \circ f)(1)$.
$\frac{15}{4}$
(11) If $f(x)=\frac{1}{x-1}$ and $g(x)=\frac{1}{x+2}$, find $(f \circ g)(x)$, and state its
$(f \circ g)(x)=-\frac{x+2}{x+1}$. Domain is $(-\infty,-1) \cup(-1, \infty)$
(12) If $f(x)=x^{2}-1$ and $g(x)=\sqrt{x+1}$, find $(g \circ f)(x)$ and sta
$(g \circ f)(x)=x$. Domain is all real numbers: $(-\infty, \infty)$.
(13) Given that $f(x)=x^{2}-4$ and $g(x)-3 x+6$, find and simpli
$(f g)(x)=3 x^{3}+6 x^{2}-12 x-24$. Domain is all real numbers:
$(-\infty, \infty)$
(14) Given that $f(x)=\sqrt{4-x}$ and $g(x)=\sqrt{x+2}$, evaluate $\left(\frac{g}{f}\right)$
$\sqrt{\frac{1}{2}}$
(15) Let $f(x)=x+2$ and $g(x)=\frac{1}{x+2}$. Find and simplify
(a) $(f \circ g)(x)$
(b) $\quad(g \circ f)(x)$. Also state the domains of these composite functi
(a) $\quad(f \circ g)(x)=\frac{2 x+5}{x+2}$. Domain is $(-\infty,-2) \cup(-2, \infty)$;
(b) $\quad(g \circ f)(x)=\frac{1}{x+4}$. Domain is $(-\infty,-4) \cup(-4, \infty)$
(16) Find and simplify the difference quotient for the function $f(x$
-3
(17) Find and simplify the difference quotient for the function $f(x$

$$
2 x+2 h-3
$$

(18) Determine the difference quotient of the function $f(x)=x^{3}$

$$
3 x^{2}+3 x h+h^{2}
$$

(19) Determine the difference quotient of the function $f(x)=\frac{3}{2-x}$

$$
\frac{3}{(2-x-h)(2-x)}
$$

(20) Determine the difference quotient of the function $f(x)=\sqrt{x}$

$$
\frac{1}{\sqrt{x+h-3}+\sqrt{x-3}}
$$

(21) Find and simplify the difference quotient of the function $f(x)$

$$
\frac{-6}{(x+h-3)(x-3)}
$$

(22) Find and simpify the difference quotient of the function $f(x)$
$\frac{x^{2}+h x-2 x}{(x-1)(x+h-1)}$

Best viewed in Mozilla Firefox. Click here to download.

