## Dr. Lalitha Subramanian

## About the Author

## PrecAlculus

## Chapter 1 - Functions and Graphs

PDF Version

## 1.1: Definitions and representations

A relation between two sets $X$ and $Y$ is a correspondence between elements of set $X$ and the elements of set $Y$. This can also be defined as a set of points in a $x y$ - plane, whose coordinates are $(x, y)$ such that $x \in X$ and $y \in Y$.

A function is a relationship or mapping of the elements of a set $X$ to the elements of a set $Y$ such that each element in the set $X$ is mapped to a unique element in the set $Y$, by a rule.

The elements of the set $X$ are called input values and the elements of the set $Y$ which correspond to any element of the set $X$ are called the output values.

The set $X$ is called the Domain and the the set $Y$ is called the
Codomain. The set of all elments of $Y$ that correspond to any element of $X$ is called the Range. Obviously, Range is a subset of Codomain.

All relations are not functions. Only the relations which map each input value to a unique output value are functions.

A function can also be viewed as a Rule that produces a unique element in the set of $Y$ for every element in the set of $X$, the elements of the set $Y$ is dependent on the elements of $X$. So, if we represent the elements of $Y$ as $y$, and the elements of $X$ as $x, x$ is called the independent
variable and $y$ is called the dependent variable.
A relationship between two sets $X$ and $Y$ can be represented by any of the following ways:

1. Diagramatic representation.
2. Algebraic representation.
3. Graphical representation.
4. Set rerpresentation, as a set of ordereed pairs.

Diagramatic representation: In the following diagram,
Figure(a) has more than one element of $X$ mapped to an element of $Y$. But this mapping conforms to the rule of a function. This type of function is called Many-to-one function.
Figure(b) has each element mapped to exactly one element in $Y$. This relationship also conforms the rule of a function. This type of function is called One-to-one function.
Figure(c) has at least one element of $X$ mapped to more than one element of $Y$. This does not conform to the rule of a function. So, these types of one-to-many relationships are not functions .


EXAMPLE 1:
Determine the type of relationship represented in the following diagram and state whether it is function or not:


Solution: As more than one element of $X$ is mapped to one element of $Y$, this is s many-to-one function.
Note that the domain of the function is the set $\{a, b, c, d\}$ and the range is $\{2,3,4\}$ while the codomain is $\{1,2,3,4,5\}$.

Algrbraic representation: The rule that associates the variable $x$ to the variable $y$ is written as $y=f(x)$, and read as " $y$ is a function of $x$.", or " $y$ is the value of $f$ at $x$. We can determine if a rule defines a function or not by checking if any value of $x$ gives more than one value for $y$ according to that rule.

## EXAMPLE 2:

Determine whether the formula $y=x^{2}-2 x+5$ defines a function.
Solution: Yes. Because, when we plug in any value for $x$ in the formula, we get a unique value of $y$.
As any value of $x$ plugged into the equation gives a unique real value of $y$, the domain of this function is the set of all real numbers $(-\infty, \infty)$ and the range is also the set of all real numbers $(-\infty, \infty)$

EXAMPLE 3:
Determine if the formula $x^{2}+y^{2}-2 x=6$ defines a function.
Solution: No. Solving this formula for $y$, we get

$$
\begin{aligned}
y^{2} & =6-x^{2}+2 x \\
y & = \pm \sqrt{6-x^{2}+2 x}
\end{aligned}
$$

This means, for each value of $x$ we substitute in the formula, we get two values of $y$. So, this is not a function.

Graphical representation: Any relationship between $x$ and $y$ can be graphed by plotting ordered pairs $(x, y)$ that satisfy the relationship. A graph defines a function if and only if no vertical line intersects the graph in more than one point. If a vertical line intersects the graph in more than one point, this would mean that the graph gives more than one value for $y$ for that particular value of $x$ where that vertical line is placed. This test of determining a funtion using graph is called vertical line test

Below are two graphs that confirm this rule.


In the above graph, the vertical line intersects the graph in two points. So, this is not the graph of a function.


The above graph is a function a vertical line crosses the graph in exactly one point. Note that this is true for any vertical line.

Set representation: A relation can be represented by a set of ordered pairs $(x, y)$ where the values of $x$ are in the domain and the values of $y$ are in the range. In this representation, we just need to check if any value of $x$ is paired with more than one value of $y$.

## EXAMPLE 4:

Check whether or not the set of ordered pairs $\{(1,2),(2,4),(5,1),(1,8)\}$ defines a funciton.

Solution: No. Note that $x=1$ is paired with $y=2$ and $y=8$.

## EXAMPLE 5:

Determine if the set $\{(4,1),(3,8),(1,2),(5,2)\}$ defines a function.
Solution: Yes. Note that each velue of $x$ is paired with a different value of $y$. Also note that the values $x=1$ and $x=5$ are paired with the value of $y=2$. This is a many-to-one function. Domain of this function is $1,3,4,5$ and range is $1,2,8$.

The domain of a function is the set of all values of $x$ that makes the value of the function meaningful.
Unless otherwise stated or implied, domain of all polynomial functions is the set of real numbers $(-\infty, \infty)$.

The domain of a rational function is the set of all real numbers that do not make the demominator expression zero.

The domain of a radical function is the set of all realnumbers that make a non-negative radicand.
Range of a function is the set of all values of $y$ that correspond to the values of $x$.

## EXAMPLE 6:

Find the domain and range of the function $y=\sqrt{x-2}$
Solution: To find the domain, set the radicand greater than or equal to zero, and solve.

$$
\begin{array}{r}
x-2 \geq 0 \\
x \geq 2
\end{array}
$$

So, the domain of this function is $\{x \mid x \in \mathcal{R}: x \geq 2\}$
In interval notation, domain is $[2, \infty)$.
The least value of $x$ is 2 , which result in $y=0$. All values of $y$ are positive. So, the range of this function is $\{y \mid y \in \mathcal{R}: y \geq 0\}$. In interval notation, range is $[0, \infty)$.

## EXAMPLE 7:

Find the domain and range of the function $y=\frac{x+2}{x-3}$.
Solution: To find the domain, set the denominator to zero, and solve.Then, exclude thls value from the set of real numbers.

$$
\begin{aligned}
x-3 & =0 \\
x & =3
\end{aligned}
$$

So the domain is $\{x \mid x \in \mathcal{R}: x \neq 0\}$ and in interval notation, $(-\infty, 0) \cup(0, \infty)$
Range is the set all real numbers $(-\infty, \infty)$

## EXAMPLE 8:

Find the domain and range of the function $f(x)=\frac{2 x-3}{\sqrt{x+1}}$
Solution: Domain: While numerator can take all values, denominator cannot be zero, and cannot be negative because of the square-root. So, the domain would be all real numbers that satisfies the inequality $x+1>0$. Solving this would result in all values of $x>-1$. So, domain of this function is $\{x \mid x \in \mathcal{R}: x>-1\}$ in set notation and $(-1, \infty)$ in interval notation.
Range: As the denominator is always positive and can be either less than or more than 1 , the range is all real numbers $\{x \mid x \in \mathcal{R}\}$ in set notation and $(-\infty, \infty)$ in interval notation.

As the algebraic notation of a function $y=f(x)$ suggests, the variable $x$ is the input value of the function. The value of the function is the output value $y$, which is the result of substituting the value of $x$ in the expression $f(x)$.

## EXAMPLE 9:

Find the value of the function $y=x^{2}-3$ for $x=-2$.
Solution: Substituting the $x=-2$ in the function, we get

$$
\begin{aligned}
y & =(-2)^{2}-3 \\
& =4-3 \\
& =1
\end{aligned}
$$

## EXAMPLE 1O:

A function is defined by $f=\sqrt{1-2 x}$. Find the point where the graph of this function intersects $x$-axis..

Solution: Any point on the $x$-axis has its $y$ coordinate 0 . So, the x intercepts are obtained by solving $f(x)=0$.

$$
\begin{aligned}
\sqrt{1-2 x} & =0 \\
1-2 x & =0 \\
1 & =2 x \\
\frac{1}{2} & =x
\end{aligned}
$$

## EXAMPLE II:

A function is defined by the set of ordered pairs $f=\{(-2,3),(-1,0),(0,1),(1,0),(2,1)\}$. Find $\mathrm{f}(-1)$.

Solution: Note that the ordered pair that has $x$ - coordinate -1 has $y$ -coordinate 0. So, $f(-1)=0$.

## Practice Problems

(1) Determine whether the following set diagram defines a function and if so, if it is one-to-one or many-to-one function: 1
(2) Determine whether the following set diagram defines a function and if so, if it is one-to-one or many-to-one function:
(3) Determins whether the relationship $y+2 x-3=0$ is a function or not. If it is a function, is it one-to-one or many-to-one?
(4) Determine whether the relationship ${ }^{2}+2 x-y+3=0$ is a function or not.If it is a function, is it one-to-one or many-to-one?
(5) Determine whether the relationship $x-2 y^{2}+3=0$ is a function or not.If it is a function, is it one-to-one or many-to-one?
(6) Use the vertical line test to determine whether the given graph is
(a)

(b)

(c)

(7) Determine whether each of the following collection of ordered pairs represent a function or not. If it is a function, state if it is one-to-one or many-to-one function.

$$
\begin{aligned}
& f=\{(1,2),(2,3),(6,3),(10,4),(14,20)\} \\
& g=\{(3,1),(1,3),(2,5),(3,6)\} \\
& h=\{(10,2),(8,8),(7,10),(6,12),(2,4)\}
\end{aligned}
$$

(8) Find the domain and range of the function

$$
f=(1,2),(2,4),(4,8),(5,9),(8,13)
$$

(9) Find the domain of the function $f(x)=\frac{4}{2 x+3}$
(10) Find the domain of the function $f(x)=\sqrt{x^{2}-4}$
(11) Fin the domain of the function $g(x)=\frac{x-3}{(x+2)(x-1)}$
(12) Find the domain and range of the function $x^{2}-5$.
(13) Find the domain and range of the function $g(x)=\frac{2-x}{x^{2}-9}$
(14) Find the domain and range of the function $g(x)=\frac{x^{2}}{\sqrt{1-x^{2}}}$
(15) Find the value of the function $f(x)=2 x^{3}-3 x+2$ when $x=2$.
(16) Given that $h(x)=\frac{1-x}{x^{3}}$, find $h(-1)$
(17) A function $f$ is defined the set of ordered pairs $\{(1,3),(2,4,(3,3),(4,0),(5,-5)$. Find $f(2)$
(18) Given that $f(x)=x^{2}-1$ and $g(x)=1-2 x$, find $f[g(-2)]$
(19) Does the collection of ordered pairs $\{(-2,1),(1,3),(2,4),(3,1)\}$ define a function? If yes, state its domain and range.
(20) Determine which of the following equations represent $y$ as a function of $x$ :
(a) $x^{3}+y^{2}=1$;
(b) $x^{2}+y^{3}=2$;
(c) $x^{y}+3 y=1$
(21) A function is defined by $y=-x^{2}+3 x+4$. Simplify the following:
(a) $f(2 x)$;
(b) $2 f(x)$;
(c) $f(x+2)$;
(d) $f(x)+f(2)$.
(22) Find the domain of the function $f(x)=\sqrt{5-3 x}$
(23) Find the domain of the function $\frac{\sqrt{2 x+1}}{x^{2}-1}$
(24) Given a function $f(x)=\sqrt{2+1}$, evaluate $f(a+h)$
(25) For a function $g(x)=x^{2}-x-12$, find the values of $x$ for which the graph of the function intersects the $x$-axis.

